Wednesday, September 4, 2013

Hamiltonian cycles

                                                              HAMILTONIAN CYCLE

It is a cycle in a graph where every vertex is used once and only once.

                                                   Here 123451 is a cycle in which every vertex is used once and only once.so this graph is a Hamiltonian graph.

                                                             HAMILTONIAN PATH

It is a path in a graph where vertex is used once and only once

                                                        Here 1425631 is a Hamiltonian path.


                                             Theorems associated with Hamiltonian cycle 

  • Ove's Theorem          
                                 If a graph with n vertices has every verex of degree >=n/2,then it has a Hamiltonian cycle. 

  • Dirac's Theorem
                               If in a graph with n vertices for every pair of non-adjacent vertices u,v if d(u)+d(v)>=n,then it is a Hamiltonian cycle




                                        Connected graphs

A network is said to be connected if between every pair of vertices there exists atleast one path.

                                                       

                           A graph which is not connected is called a disconnected graph.

                                                                     Subgraph of a graph

                                          A subgraph of a graph is a graph with either less number of vertices or edges than that of the given graph.
                                           A spanning sub graph of a graph is a sub graph which retains all the vertices of the original graphs.


                                                                       Component

Given any graph G,a component of G,say G1 is a maximal connected sub graph of G.(ie.G1 should not be a proper sub graph of another connected sub graph of G. If G itself is connected then it has only one component. ie .G itself.




No comments:

Post a Comment